G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI. ] é um
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
A Superfície de Fermi é definida como a superfície de energia constante no espaço recíproco. Na temperatura do zero absoluto, a superfície de Fermi separa os orbitais vazios dos orbitais ocupados. Como a corrente elétrica se deve a mudanças na ocupação dos estados próximos da superfície de Fermi, a forma e volume desta determina as propriedades elétricas de um metal. Além disso, a superfície de Fermi também é útil para determinar propriedades térmicas, magnéticas e ópticas dos metais.
Teoria
Muitas das propriedades de um material podem ser calculadas ignorando a dinâmica das interações dos elétrons entre si e com rede cristalina. Porém, existem aproximações de interações fracas entre elétrons e a rede, ou seja, assumindo que eles se movem em um potencial periódico fixo que é criado por uma rede perfeitamente rigida de íons e por uma distribuição média de elétrons.
Como estamos interessados em descrever apenas os elétrons exteriores, podemos incluir ao potencial efetivo um termo fortemente repulsivo representando o principio de exclusão de Pauli e o fato das funções de onda do núcleo e do estado de condução serem ortogonais entre si. Esse potencial é chamado de pseudopotencial e é aproximadamente zero, devido a soma do termo repulsivo e do termo atrativo, para a maior parte dos casos.
As soluções da equação de Schrodinger com um pseudopotencial fornecem o número de autoestados da partícula única, e variam continuamente com o vetor de onda k, assim elas podem ser expressas como uma sequência de funções continuas de k, , onde n é o número da n-ésima banda de energia.
Essas funções são periódicas no espaço recíproco, e para contar cada estado apenas uma vez, vamos nos restringir apenas à primeira zona de Brillouin. Na temperatura de zero absoluto, os elétrons em um sólido preenchem os estados de energia começando pelo estado mais baixo. O número total de elétrons determina quantas bandas disponíveis serão preenchidas com elétrons e se as últimas bandas serão preenchidas ou ficarão parcialmente vazias. Como estamos interessados em estudar os metais, vamos considerar apenas os casos onde as bandas são parcialmente preenchidas.
Se a n-ésima banda está parcialmente preenchida, os orbitais ocupados e os orbitais vazios da primeira zona de Brillouin são separados pela superfície de Fermi, que é definida como , onde a energia de Fermi, , é a mais alta energia para a qual existe um estado ocupado.
Um modelo simples para superfície de Fermi, o gás de elétrons livre, é obtido negligenciando os efeitos da não uniformidade do potencial sentido pelos elétrons na banda de condução. A energia de cada elétron é dada pela energia de partícula livre[1]:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde estados de baixa energia preenchem uma esfera perfeita quando a temperatura é igual a zero; a superfície de Fermi é esférica. Para a maioria dos metais essa é uma ótima aproximação para a superfície de Fermi, especialmente pra metais monovalentes, onde a esfera de Fermi encontra-se totalmente na primeira zona de Brillouin.
Construção da superfície de Fermi
A Figura mostra as três primeiras zonas de Brillouin para uma rede quadrada. O circulo é uma superfície de energia constante para elétrons livres e corresponde a superfície de Fermi para um certo valor da concentração de elétrons. A área total da região ocupada por elétrons no espaço recíproco depende apenas dessa grandeza e é, portanto, independente da interação dos elétrons com a rede. No caso real a superfície de Fermi depende da interação dos elétrons com a rede e, portanto, não é um circulo perfeito.
Devido a inconveniência de se representar as regiões da superfície de Fermi que pertencem a mesma zona em diferentes partes do gráfico, utiliza-se o esquema de zona reduzido. A Figura mostra a superfície de Fermi de elétrons livres da Figura no esquema de zonas reduzido.
As regiões sombreadas representam estados ocupados por elétrons. Partes da superfície de Fermi se estendem até a segunda, terceira e quarta zonas. A quarta zona não está representada na figura, a primeira zona está totalmente ocupada.
Para passar das superfícies de Fermi de elétrons livres para elétrons quase livres de forma quantitativa é necessário a realização de complexos cálculos matemáticos, porém existe uma uma maneira qualitativa de se prever as formas das superfícies de Fermi para elétrons quase livres, levando em consideração os seguintes fatos:
- A interação do elétron com o potencial periódico da rede dá origem a zonas proibidas nos limites da zona de Brillouin.
- Quase sempre a superfície de Fermi intercepta os limites das zonas perpendicularmente.
- O potencial da rede arredonda os vértices das superfícies de Fermi.
- O volume total contido na superfície de Fermi não depende dos detalhes da interação com a rede, mas depende quase exclusivamente da concentração de elétrons.
As superfícies de Fermi para elétrons livres podem ser construídas usando o método de Harrison. Nele são determinados os pontos de rede reciproca e uma esfera de elétrons livres, de raio apropriado para a concentração de elétrons, é traçada com centro em cada um desses pontos. Qualquer ponto do espaço reciproco que esteja no interior de pelo menos uma esfera corresponde a um estado ocupado na primeira zona. Os pontos que estão no interior de pelo menos duas esferas correspondem a estados ocupados da segunda zona e assim por diante.
Medidas experimentais envolvendo a superfície de Fermi
A superfície de Fermi nos metais é uma prova de que os elétrons no sistema podem ser tratados através da teoria de quase-partículas.
Foi analisado nas seções anteriores que esta superfície é crucial para o entendimento de propriedades térmicas, magnéticas, elétricas e ópticas. Neste sentido, experimentalmente é necessária a existência de ferramentas específicas de modo a elucidar quais os materiais existentes ou mesmo descobrir quais são os formatos da superfície de fermi de determinado composto.
Neste sentido, existem diversas técnicas, como a aplicação do efeito De Haas-van Alphen Effect entre outras que pautam pela utilização de altos campos magnéticos para que ocorra a diferenciação de períodos de oscilação e assim possa-se medir indiretamente o modo com o qual os estados ocupados do material e portanto podendo inferir na superfície de Fermi.
Atualmente, duas técnicas tem tido destaque para se resolver as superfícies de fermi: ARPES, espectroscopia de fotoemissão angularmente resolvida, e STM, microscópio de tunelamento.
ARPES - Espectroscopia de fotoemissão resolvida em ângulo
A técnica ARPES é baseada no efeito fotoelétrico, explicado em 1905 por Einstein através do conceito de quanta de energia.
Neste efeito, os elétrons de um material podem absorver um fóton e serem ejetados se a energia do respectivo fóton é maior que a função trabalho do material.
O ARPES funciona da seguinte forma: Uma linha de radiação branca é produzida, através da utilização de um monocromador uma determinada linha é selecionada, esse comprimento de onda é então iluminado em uma amostra. Um detector então analisa os fotoelétrons emitidos pela amostra registrando a energia e o ângulo de incidência do feixe. As resoluções atuais são de aproximadamente 2 meV e 0,2° em sofisticados experimentos feitos em síncrotrons ao redor do mundo.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Ao se registrar os ângulos e as energias, é possível através da conservação de energia e do momento da onda nas direções paralela e perpendicular, registrar o valor de V0 que é a distância da energia de Fermi ao nível do vácuo. Fazendo-se um mapa para diversos vetores de onda k, é possível construir um mapa da superfície de Fermi.
Uma das maiores desvantagens da técnica ARPES é a falta de uma informação da superfície de fermi do material como um todo, pois somente é possível a análise de determinadas direções de uma só vez, e devido ao tempo de aquisição das medidas, não é possível garantir que as distribuições eletrônicas permaneçam constantes por longos intervalos temporais.
A energia de Fermi é importante na hora de entender o comportamento de partículas fermiônicas, como por exemplo os elétrons. Os férmions são partículas de spin semi-inteiro para as quais verifica-se a validade do princípio de exclusão de Pauli - que dita que dois férmions idênticos não podem ocupar simultaneamente o mesmo estado quântico. Desta maneira, quando um sistema possui vários elétrons, estes ocuparão níveis de energia maiores a medida que os níveis inferiores estejam preenchidos.
A energia de Fermi é um conceito que tem muitas aplicações na teoria dos orbitais atômicos, no comportamento dos semicondutores e na física do estado sólido em geral.
Em física do estado sólido a superficie de Fermi é a superficie no espaço de momentos na qual a energia de excitação total se iguala à energia de Fermi. Esta superfície pode ter uma topologia não trivial. Simplificadamente se pode dizer que a superfície de Fermi divide os estados electrônicos ocupados dos que permanecem livres.
Enrico Fermi e Paul Dirac, derivaram as estatísticas de Fermi-Dirac. Estas estatísticas permitem predizer o comportamento de sistemas formados por um grande número de elétrons, especialmente em corpos sólidos.
A energia de Fermi de um gás de Fermi (ou gás de elétrons livres) não relativista tridimensional se pode relacionar com o potencial químico através da equação:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde εF é a energia de Fermi, k é a constante de Boltzmann e T é a temperatura. Portanto, o potencial químico é aproximadamente igual a a energia de Fermi à temperaturas muito inferiores a uma energia característica denominada Temperatura de Fermi, εF/k. Esta temperatura característica é da ordem de 105K para um metal a uma temperatura ambiente de (300 K), pelo que a energia de Fermi e o potencial químico são essencialmente equivalentes. Este é um detalhe significativo dado que o potencial químico, e não a energia de Fermi, é quem aparece nas estatísticas de Fermi-Dirac.
Em física, a unidade de energia no sistema de unidades naturais conhecida como unidades de Planck é chamada a energia de Planck, notada por EP.
- 1.956 × 109 J 1.22 × 1019 GeV 0.5433 MWh
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde c é a velocidade da luz no vácuo, é a constante de Planck reduzida, e G é a constante gravitacional. EP é a derivada, como oposta a básica, unidade de Planck.
Um definição equivalente é:
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde é o tempo de Planck.
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Em física estatística e física da matéria condensada, densidade de estados (DOS, do inglês density of states) é a propriedade que quantifica quão proximamente "empacotado" em níveis de energia está um sistema mecânico quântico. Um DOS alto em um nível específico de energia significa que há muitos estados disponíveis para ocupação. Um DOS nulo, zero, significa que nenhum estado pode ser ocupado em um nível de energia.
Explanação
Ondas, partículas comportando-se como ondas, podem somente existir dentro de sistemas mecânico quânticos (MQ) se propriedades do sistema seguem a ondulação existente. Em alguns sistemas, o espaçamento interatômico e a carga atômica do material segue somente elétrons de certos comprimento de onda existentes. Em outros sistemas. a estrutura cristalina do material leva ondas a se propagar em somente uma direção, enquanto suprime a propagação de ondas em outra direção. Ondas em um sistema MQ tem comprimentos de onda específicos e podem propagar-se em direções específicas, e cada onda ocupa um diferente modo,ou estado. Devido a muitos destes estados terem o mesmos comprimentos de onda, entretanto dividirem a mesma energia, podem existir muitos estados disponíveis em certos níveis de energia, enquanto nenhum estado é disponível em outros níveis de energia.
Por exemplo, a densidade de estados para elétrons em um semicondutor é mostrada em vermelho na Fig. 2. Para elétrons na fronteira da faixa de condução, muito poucos estados estão disponíveis para o elétron ocupar. A medida que o elétron aumenta em energia, a densidade de estados do elétron aumenta e mais estados tornam-se disponíveis para ocupação. Entretanto, porque não há estados disponíveis para elétrons ocuparem dentro da faixa de abertura, elétrons na fronteira da faixa de condução devem perder pelo menos de energia de maneira a realizarem a transição a outro estado disponível.
A densidade de estados pode ser calculada para elétrons, fótons, ou fónons em sistemas MQ. É usualmente notado com um dos símbolos g, , n, ou N. É uma função g(E) da energia interna E, na qual a expressão g(E) dE representa o número de estado com energias entre E e E+dE.
Para converter entre energia e vetor de onda, a relação específica entre E e k deve ser conhecida. Por exemplo, a fórmula para elétrons é
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
E para fótons, a fórmula é
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
Pode também ser escrito como uma função da frequência angular , a qual é proporcional à energia. A densidade de estados é usada extensivamente em física da matéria condensada, onde pode referir-se ao nível de energia dos elétrons, fótons ou fônons em um sólido cristalino. Em sólidos cristalinos, há frequentemente níveis de energia onde a densidade dos estados dos elétrons é zero, o que significa que os elétrons não podem ser excitados a estas energias. A densidade dos estados também ocorre na regra dourada de Fermi, a qual descreve quão rápido as transições mecânico quânticas ocorrem na presença de uma perturbação.
Num sistema tridimensional, a densidade de estados em espaço recíproco (espaço k) é
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde V é o volume e n o número de pontos de ramificação que existem para um único valor de k. Estes pontos de ramificação são por exemplo o spin-acima e spin-abaixo estados para elétrons, as polarizações de fótons, e os modos longitudinais ou transversais para fônons.
Materiais cristalinos
Dado que em materiais (cristalinos), o número de escalas varia linearmente com o volume, uma diferente definição de densidade de estados é algumas vezes usada, na qual g(E) ou g(k) é o número de estados por unidade de energia (vetor onda) e por unidade de volume ou por unidade de célula da grade.
Em um material cristalino, onde os estados mecânico quânticos podem ser descritos em termos de seus vetores de onda k, a densidade dos estados como uma função de k é não dependente das propriedades do material. Das condições periódicas segue que em um volume arbitrário , somente vetores k são mantidos satisfazendo
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
onde são inteiros positivos ou negativos arbitrários. Usando
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
pode ser derivado que para uma matriz tridimensional o número de estados G(k) dk entre k e k+dk é
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
para um único caso.
Em sólidos, a relação entre E e k é geralmente muito complexa e dependente do material. Se a relação é conhecida, a expressão para a densidade dos estados é
/
G* = = [ ] ω , , / T] c [ [x,t] ] =
A relação acima é somente significativa se a energia somente depende da manitude do vetor k.
Comentários
Postar um comentário